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I N T E R A C T I O N  OF A T O L L M I E N - S C H L I C H T I N G  WAVE 

W I T H  A LOCAL F L O W  I N H O M O G E N E I T Y  

M. V .  U s t i n o v  UDC 532.517 

The method of parabolic stability equations is used to study the laminar-turbulent transition 
in a boundary layer with a stationary velocity inhomogeneity concentrated in a narrow stream. 
The location of the transition is found as a function of the magnitude and sign of the velocity 
defect. It is shown that if the inhomogeneity amplitude is small, it affects only the final nonlinear 
stage of disturbance development. In this case, the location of the transition is independent of 
the sign of the velocity defect. Having a moderate amplitude, a lower-velocity inhomogeneity 
shifts the transition location significantly more strongly than a higher-velocity inhomogeneity 
of similar shape and amplitude. This is caused by amplification of unstable disturbances in the 
low-velocity region and, conversely, their attenuation in the high-velocity stream. The effect of 
disturbance amplification in the low-velocity region is shown not to be connected with inflection- 
type instability. Another explanation of this phenomenon is offered. 

It has been found that stationary disturbances in the form of individual or periodic streams with higher 
or lower flow velocity play an important role in the process of laminar-turbulent transition. These disturbances 
penetrate into the boundary layer from the external flow or arise because of surface roughness. Butler showed 
[1] that they can be amplified according to an algebraic law and reach a substantial amplitude. A steady flow 
inhomogeneity itself, however, does not lead to the transition, but only creates conditions for faster growth 
of unsteady disturbances whose amplification turbulizes the flow. Thus, study of possible mechanisms of flow 
instability with a localized or periodic velocity inhomogeneity is an important problem [2-5]. 

Yu [2] and Fisher [3] studied theoretically the stability of a boundary layer with periodic longitudinal 
vortices and they identified two types of instability modes. The modes of the first type are similar to Tollmien- 
Schlichting waves and have the largest growth rates when the inhomogeneity has a small amplitude. A large 
amplitude of the inhomogeneity gives rise to rapidly growing modes of the second type, which have a high 
frequency and are related to inviscid instability. Experiments of Kachanov [4] and Bakchinov [5] support the 
theoretical conclusions of Yu, Fisher, and others [2, 3]. 

In contrast to [2-5], transversely localized inhomogeneities rather than periodic ones are observed 
under experimental conditions with an elevated level of free-stream turbulence. The problem of interaction 
of an instability wave with such an inhomogeneity is solved in the present paper by the method of parabolic 
stability equations, both the linear and nonlinear evolution of disturbances being studied. 

1. Formula t ion  of t h e  Prob lem.  We consider a viscous incompressible flow past a flat plate. The 
kinematic viscosity of the liquid is t/. At a large distance from the leading edge (to satisfy the boundary-layer 
approximation) there is a local region of the plate surface through which the liquid is injected or sucked. 
A stream with higher or lower flow velocity in the boundary layer is formed beyond this region. We study the 
stability of such a flow at a large distance downstream from the injection (or suction) region. We assume that. 
as in the boundary layer on a flat plate, unstable disturbances in this flow are periodic in time and almost 
periodic in the stream direction. "We suppose also that the disturbance evolution is quite accurately described 
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by parabolic equations [6], and specification of the initial conditions at a certain distance L from the leading 
edge is sufficient to find the solution downstream. 

To describe the flow, we introduce a Cartesian coordinate system with the origin at the leading edge of 
the plate and x, y, z axes directed downstream, parallel to the leading edge and normal to the plate surface, 
respectively. The scales for coordinates and velocity are the thickness of the boundary layer at the site where 
the initial conditions are specified 6 = ~ / u o r  and the free-stream velocity uco. In these length units, the 

site of specifying the initial conditions has the dimensionless coordinate x = ~ [ u  = R. To specify the 
initial conditions for the stationary flow inhomogeneity, we consider the problem of liquid flow in the injection 
(or suction) region and confine ourselves to the linear problem for low-velocity injection (or suction). To 
create a solitary s tream with higher or lower velocity, the injection (or suction) should be concentrated in a 
region bounded in y. However, the method of parabolic stability equations that  we use below requires periodic 
initial conditions which can be expanded in a Fourier series with respect to y. Since the problem is linear, 
the injection (or suction) distribution should also have the form of a Fourier series. Thus,  the shape of the 
injection (or suction) distr ibution is described by the function 

N 
9(y) = (1 - - q ) ~  qn - '  cos n#y.  

n=, 
For q slightly smaller than unity and for a rather large number  of harmonics N, this function is comparatively 
small [about (1 - q)/2] on most of a period and has a narrow max imum of the order of unity in the vicinity of 

The width of this max imum r = ~ 1  - q)/r13 is small in comparison with the period T = 27r/~3. For Y 0. 
this type of distribution, each injection or suction zone located in the region of maxima with y = 0, +rr/13, 
4-2r[/3, etc. does not affect the neighboring zone and thus generates an isolated velocity inhomogeneity. As 
the injection or suction distribution relative to z, we use a Gaussian function, i.e., we give a vertical-velocity 
distribution on the plate surface of the form 

(x XO)2'~ 
w(x ,y ,O)  = ~exp ( 

Here e << 1 is the ampli tude,  and x0 and A are the position of the center of the injection (or suction) 
region and its characteristic width, respectively. For simplicity, the boundary-layer flow near the injection (or 
suction) region is assumed to be plane-parallel with a velocity profile Uo(z) that  corresponds to the point 
of specification of the initial conditions. The steady velocity perturbations eVp0 generated by injection or 
suction are then determined by the Fourier transform method [7] and have the form 

N 
Vp0 = {up0, vpo, wpo } = ~ V0, ,  V0,  = {u0,~ cos n~y,  vo, sin n~y,  won cos n~y  }, 

.=1 (1.2) 

YOn (x, z) = (1 -- q)qn-1 F ( k )  r (k, z) eik(z-Z~ 
WOn -co tbn 

where F(k)  = (A/vQ-~)exp(--A2k2/4)  is the Fourier transform of a Gaussian function; ft., 73~, and tb~ are 
found by solving the boundary-value problem 

ikUo( dJ~ - "t2tbn) - ",kU~ " = l " " lV "z'7~ 2-,,to. ~ t w .  - + ~4~, , ) ,  

e . ( o )  = 1, 

using the formulas 

ikUoO , .  1 (~,, -,#u;m. = ~  - , ~ ) ,  

~ ( o )  =~.(~) ' = w . ( ~ )  = ~(o) = ~ ( ~ )  = o, ~ = k s + (~B) 2 

~ .  = (ik~'.  - ,~#O)/v 2, ~ .  = (ik~ - ~ # e ,  )/~2. 

(1.3) 
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Hereinafter, a prime denotes a derivative with respect to z. The solution of (1.2) for x = R obtained for 
an injection or suction region located a distance of several characteristic lengths A upstream of the initial 
cross section will be used as the initial conditions for steady velocity perturbations. The initial conditions 
for time-periodic unstable disturbances are specified as a plane instability wave in the Blasius plane-parallel 
boundary layer. Thus, the velocity field in the vicinity of the initial cross section is given in the form 

N 
V(z ,V,z)  = Vo + ~ V0,, + V:o(z) e i( '*-'~ (1.4) 

n = l  

where V0 = {U0(z), 0, W0(z)} corresponds to the Blasius boundary layer, V0n is found from (1.2), and V~0(z) 
is the profile of velocity fluctuations in the Tollmien-Schlichting wave. 

2. N u m e r i c a l  M e t h o d .  To describe the flow evolution and unstable disturbances, we use the method 
of parabolic stability equations presented in detail in [6]. As in [6], we represent the velocity field as a 
superposition of the Blasius boundary-layer flow V0 and the not necessarily small perturbations Vp: 

V = V0(z, z) +Vp(x,y,z,t) .  (2.1) 

We assume the velocity perturbations to be periodic with respect to y and t and write them in the form 

N M 

:c z 
n=0 m=0 (2.2) 

V,,,n = {U,nn(Z, Z) COS n/3v, v,,,,,(X, z) sin nBy, w,,,n(X, z) COS nBy}. 

The amplitudes V,nn and the wave number a are assumed to be slowly varying functions of z. The 
characteristic scale on which V,,,n and a vary by their magnitude is of the order of R. 

To obtain equations for the velocity amplitudes V,,,n, relations (2.1) and (2.2) and a similar relationship 
for pressure are substi tuted into the Navier-Stokes equations. The resultant system is parabolized by 
eliminating the pressure and omitting terms of the order of 1/R 2, among which there are terms containing 
~l(e second derivatives of the amplitudes and the w a renum ber  with respect to z. As a result, the problem 
reduces to the following system of parabolic equations for the amplitudes of individual harmonics: 

L o  0vm. *1 d .2 
0-'--~ + LmnV"tn + -~z Lm"Vm" = Nmn(V,),  (2.3) 

V,m,(0) = Vmn(oo) = 0, m = 0 , . . . , M ;  n = 0 , . . . , N .  

Here L~ Lima, and L2mn are linear differential operators that include only derivatives with respect to z; 
the right-hand sides Nmn contain nonlinear terms that take into account the contribution of the remaining 
harmonics. The expressions for the operators L~ LXmn, and L2n for two-dimensional disturbances are given 
in [6], and those for three-dimensional disturbances can be found in [8]. 

The initial conditions for the harmonic amplitudes Yon (n = 1 , . . . ,  N) and V10, which determine the 
steady inhomogeneity and the plane instability wave, were discussed in Sec. 1, and the initial amplitudes of 
the remaining harmonics were set equal to zero. 

Equations (2.3) were solved numerically by the marching method. An implicit second-order scheme 
with iterations was used for approximation of (2.3) with respect to z. The wave number a versus x was 
found in the course of solution from the condition of the slowest variation of the arguments of the harmonic 
amplitudes. Discretization of (2.3) with respect to z was performed using the method of collocations. As 

the basis functions we used Ft = zexp(-z/2)Ll~ l = 0 , 1 , . . . , Q -  1, where Ll~ are the Laguerre 

values of the polynomial L(~)(z) were assumed to be collocation nodes. The number polynomials. The zero 
of nodes Q in all calculations was 41. In addition, the method of collocations described was used to solve 
the boundary-value problem (1.3) and the eigenvalue problem for the Orr-Sommerfeld equation, which are 
needed to specify the initial conditions for (2.3). 

3. C a l c u l a t i o n  Resu l t s .  We choose z = R = 800 as the initial cross section and confine ourselves to 
consideration of the interaction between a Tollmien-Schlichting wave with frequency w = 0.032 and amplitude 
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this purpose, we choose the following fixed parameters determining the injection (or suction) distribution: 
= 0.02, q = 0.95, A = 20, z0 = 600, and N = 41. The injection intensity e is varied. 

The field of the steady velocity component  in the initial cross section is shown in Fig. 1. The  transverse 
distribution of the defect of the longitudinal velocity component  up0 for z = 2.64, where it reaches the 
maximum with respect to z, is presented in Fig. la  (one period is plotted). To obtain a universal curve, the 
velocity defect is referred to its maximum at y = 0. Figure lb  shows velocity profiles for y = 0 that  were 
obtained for various injection intensities: e = -1.875-10 -3,  -6 .25-10 -4, 0, 6.25-10 -4,  and 1.875.10 -3 (curves 
1-5). For these values of e, the maximum velocity defect at the point y = 0, z = 2.64 amounts  to 0.3, 0.1, 0, 
-0 .1,  and -0 .3 ,  respectively. The  last two profiles with negative defects are inflected. 

It is seen from Fig. 1 that ,  for the chosen injection distribution, a narrow region with a noticeable 
velocity defect and small velocity perturbations in the remaining part  of the period is formed. The  width of 
this region Ay ~ 40 was intentionally selected roughly equal to the characteristic width of the streams with 
higher and lower velocities that  are formed in a boundary layer with a high level of free-stream turbulence [9]. 

All the results of this s tudy were obtained for the number  of harmonics M = 5 and N = 40 in the 
velocity equation (2.2). The  number  of harmonics N in the transverse direction is chosen under the assumption 
that  it is possible to describe the growth of secondary disturbances at the nonlinear stage of transition. 
Furthermore, the min imum allowable transverse period of disturbances a ,,, 2a' /N3 ~, 8 is approximately 
one-fifth the width Ay of the inhomogeneity region, which allows us to describe quite accurately the details 
of the distribution of pulsations with respect to !/. The  number  of harmonics in the direction z is chosen as 
large as possible for computat ions  on the available computer.  A comparison of the results for M = 2 and 5 
shows a noticeable quanti tat ive disagreement only within the short final stage of disturbance evolution. 

To study the influence of a localized flow inhomogeneity of various intensities on the development of 
unstable disturbances, we calculated the flow evolution for injection intensities corresponding to the maximum 
velocity defects in the initial cross section Auom = -I-0.01, -1-0.1, 4-0.2, and 4-0.3. Since the method of 
parabolic stability equations does not yield an adequate description of the late stages of transition, when flow 
stochastization begins, the computat ions  were terminated after the amplitude of velocity pulsations reached 
0.1 at some point of the plane y, z. The point z .  at which this amplitude was a t ta ined was assumed to be 
the position of the laminar- turbulent  transition. Hereinafter, the pulsation ampli tude is understood as the 
quantity 

r a(x ,  z) = 2 u .Cx, z) cos , 
m = l  n = O  

which is x/~ times larger than the root-mean-square value of velocity pulsations, which is usually measured 
in experiments. 

The dependences of the pulsation amplitudes on x that  were obtained for negative and positive velocity 
defects are shown in Figs. 2 and 3. These and all subsequent pulsation amplitudes correspond to a constant 
distance from the wall z0 = 2.64, at which the velocity defect is maximum with respect to z. The dashed 
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curves in Figs. 2 and 3 correspond to the maximum amplitudes am = max a(y, z0) with respect to y, and 
v 

the solid curves correspond to the amplitudes of pulsations in the free stream in the middle between velocity 
defect regions. Curves 1-4 in Fig. 2 correspond to Auom = -0.01, --0.1, --0.2, and -0.3 ,  and curves 1-4 in 
Fig. 3 refer to Auom = 0.01, 0.1, 0.2, and 0.3. The location of the transition versus IAu0ml for negative and 
positive velocity defects is shown by the solid and dashed curves in Fig. 4. 

It is seen from a comparison of Figs. 2 and 3 that,  for small velocity defects (+0.01), the sign of the 
velocity defect does not exert a substantial effect on the evolution of disturbances. In this case, at the linear 
stage of transition the maximum amplitude with respect to y differs slightly from its free-stream value, i.e., 
the inhomogeneity does not exert a substantial effect on the Tollmien-Schlichting wave evolution. The growth 
of pulsations at the maximum with respect to y begins to lead their growth in the free stream only at the 
nonlinear stage of transition, when the pulsation amplitude becomes of the order of 1%. 

For Auom = -4-0.01, the distributions of the amplitude of pulsations with respect to y in cross sections 
located immediately before the transition are presented by curves 1 (dashed and solid) in Fig. 5; the functions 
a(y) for the positive (dashed curve) and negative (solid curve) velocity defects are almost symmetric about 
the dashed straight line a = 0.046. This means that the three-dimensional portion of the pulsations develops 
almost linearly up to the very moment of transition and probably consists of secondary disturbances that grow 
on the background of the nearly plane Tollmien-Schlichting wave. This assumption confirms the qualitative 
agreement of the distributions of the pulsation amplitude with respect to y for Au0m = +0.01 with the 
transverse distribution of the amplitude of secondary disturbances (generated by the interaction between an 
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instability wave and a point roughness) that was obtained analytically by the author [10]: 

a(y) = ae-C'2[cos/3.y + B(y/x)sin/3.y + O(y/z)2], y / z  << 1. 

Here A, B, and C are constants, x is the distance from the roughness, and/3, is the transverse wave number 
corresponding to the most rapidly growing secondary disturbances. Calculations according to the theory 
of secondary instability [11] showed that /3. changes from 0.15 to 0.25 as the amplitude of the Tollmien- 
Schlichting wave increases from 0.01 to 0.05. An estimate of/3, on the basis of the width of the central 
maximum of the function a(y) for Auom = 0.01 yields 0.17, which lies within the range predicted by the 
theory of secondary instability. For velocity defects of 4-0.1 or more, the pictures of disturbance development 
with positive and negative velocity defects are appreciably different. For positive defects, the dependences of 
the functions am on x do not experience substantial changes as the velocity defect increases to 0.3. An increase 
in the velocity defect leads only to a slightly earlier (in comparison with the case Au0m = 0.01) beginning 
of the advancing growth of the maximum amplitude. The upstream shift of the transition point with growth 
of the velocity defect is comparatively small, compared with the case of a negative velocity defect (see Fig. 
4). The weak destabilizing effect of the high-velocity stream is related to the effect of displacement of the 
unstable disturbances from the inhomogeneity region. This effect is demonstrated by the dependence a(y) for 
Auom = 0.3 that was obtained in the cross section z = 1500 before the beginning of the nonlinear stage of 
transition (the dashed curve in Fig. 5). Because of the small amplitude of pulsations in the inhomogeneity 
region, the nonlinear growth of disturbances begins whenever the level of pulsations is practically the same as 
in the free stream. Therefore, the presence of a region with a positive velocity defect does not lead to earlier 
attainment of the threshold amplitude of pulsations that is necessary for initiation of nonlinear processes and, 
hence, shifts the location of the transition only slightly. 

For negative velocity defects (Auom <<. -0.1), advanced growth of the maximum amplitudes with 
respect to y, compared with the free-stream pulsations, is observed from the very beginning. Then the growth 
rate of pulsation maxima decreases to the growth rate of the Tollmien-Schlichting wave in an undisturbed 
flow. Finally, when the transverse-maximum amplitude reaches the threshold value, nonlinear processes begin, 
which again lead to advanced growth of am. 

The comparatively rapid growth of am in the beginning of the disturbance evolution can easily be 
explained by the inflection-type instability of the velocity profile in the inhomogeneity region. However, the 
growth rate of the maximum disturbances decreases drastically much before the point of velocity inflection at 
the center of the inhomogeneity disappears. Moreover, no noticeable change in the behavior of the function 
an, versus x is observed at the sites where the inflection points disappear (they are shown by arrows in Fig. 2 
for each value of Au0m). Therefore, the hypothesis that the initial growth of pulsation maxima is caused by 
the process of transition and, in a steady state, the value of am is proportional to the free-stream amplitude 
of the Tollmien-Schlichting wave seems more realistic. This is more clearly demonstrated by the curves of 
am versus x obtained in the linear approximation for Auom = 0.1 and 0.2 (dashed curves 2 and 3 in Fig. 
2), which are, on a long section, almost parallel to curve 1 corresponding to the plane instability wave in 
the free stream. This character of evolution of disturbances allows us to conclude that the mechanism of 
inflection-type instability is not realized in a narrow zone of flow inhomogeneity. A similar effect was observed 
in experiments on the evolution of artificially generated disturbances in a boundary layer with a transversely 
periodic inhomogeneity of the velocity profile [4, 5]. Despite the presence of an inflected profile during a major 
part of a period, the growth rate of disturbances with frequencies of the Totlmien-Schlichting waves did not 
exceed the growth rate of similar disturbances in a uniform boundary layer. 

This phenomenon is apparently explained by the fact that disturbances that are amplified in a narrow 
zone should "fit" in it and, hence, should consist of a packet of oblique waves with large transverse wave 
numbers. An analysis of the stabi!ity of a transversely uniform flow with a velocity profile corresponding 
to the middle of the inhomogeneity region showed that, for sufficiently large/3, all modes become decaying. 
The rapid growth of high-frequency pulsations observed in [5] is probably associated with the inflection- 
type character of the transverse velocity distribution. The longitudinal wavelength of these disturbances is 
comparatively small, and the transverse modulation does not prevent their growth. 
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The distribution of the pulsation amplitude relative to y at the end of the linear stage of transition 
(x = 1200) for Au0,n = -0 .3  is shown by the dot-and-dashed curve in Fig. 5. It is of interest that the maximum 
pulsations are not located in the center of the inhomogeneity region, but are shifted to its boundaries. A 
similar character of the transverse amplitude distribution (in measurements at a distance from the wall that 
corresponds to the maximum velocity defect) was observed in [5] for high-frequency disturbances. For a 
frequency corresponding to the Tollmien-Schlichting wave, similar distributions were measured in [4, 5] closer 
to the wall at the height of maximum pulsations. On the other hand, the maxima of the pulsation amplitude 
in these distributions corresponded to the maxima of the steady velocity component. 

The most probable reason for the concentration of disturbances in the low-velocity stream and 
their displacement from the high-velocity stream that were observed in computations is the transverse 
inhomogeneity of the phase velocity of unstable disturbances. The phase velocity of the Tollmien-Schlichting 
wave is larger than in an undisturbed flow in the zone of a negative velocity defect and smaller in the zone 
of a positive velocity defect. According to the laws of geometrical optics, beams are concentrated in regions 
with a low phase velocity and are displaced from regions with a high velocity of propagating disturbances. 
The violation of this rule for low-frequency disturbances in [4, 5] can be explained by the fact that the 
period of inhomogeneity in these experiments is comparable with the instability wavelength and, therefore, 
the approximation of geometrical optics is no longer valid. 

At the nonlinear stage of transition, for finite velocity defects the transverse distribution of velocity 
fluctuations is apparently determined by the shape of the packet of secondary disturbances developed on 
the background of the primary instability wave, which is strongly transversely nonuniform. Analysis of the 
processes that occur is substantially complicated by difficulties in dividing the total field of pulsations into 
the primary wave and secondary disturbances. Some qualitative features, however, can be deduced from a 
comparison of the functions a(y) for Au0,,, = -0 .3  and 0.3 immediately ahead of the transition (solid and 
dashed curves 2 in Fig. 5) with similar functions at the end of the linear stage of disturbance development 
(dot-and-dashed and dashed curves in Fig. 5). For example, at the nonlinear stage the pulsation maxima are 
shifted toward regions with larger gradients of the primary-wave amplitude. This shift can be explained by 
effective generation of three-dimensional secondary disturbances on the strong transverse inhomogeneity of 
the amplitude of pulsations of the primary wave. 

It should be noted that because of the significant amplification of pulsations in the low-velocity region, 
nonlinear phenomena there begin at a very low free-stream amplitude of the instability wave. For example, for 
Au0m = --0.3 the nonlinear stage of transition at the center appears with a 0.25% amplitude of the Tollmien- 
Schlichting wave at the periphery. This effect can be the reason for the effect of a Tollmien-Schlichting wave 
with an amplitude of 0.1-0.2% on the transition process that was observed in [12] under conditions of high 
free-stream turbulence. 

This work was supported by the International Science and Technology Center (Grant No. 199-95) and 
by the Russian Foundation for Fundamental Research (Grant No. 95-01-01201a). 
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